
Qdevice

Jan Friesse <jfriesse@redhat.com>

Clusterlabs Summit 2017
September 13, 2017

1 / 11



Qdevice x Booth x SBD

I All of them use third-party arbitrator

I Each of them operates on different stack layer and has
different purpose so use all of them in one deployment is
perfectly valid

I SBD Is fencing device
I Booth

I Operates (usually) at Pacemaker level
I It’s primary use case is geo-clustering - spans multiple

“independent” clusters

I Qdevice
I Operates at Corosync (quorum) layer - it is adding vote to

single cluster quorum
I It’s primary use case is for even-node clusters/LMS/stretch

clusters

2 / 11



Qdevice

I Independent arbiter for solving split-brain situations, stretch
cluster

I Daemon running on every node of the cluster and using
Corosync votequorum API

I Modular architecture - model API
I Currently only net model is implemented (qdevice-net)

I qdevice-net has support for multiple algorithms
I Currently LMS, FFSplit and 2 Node LMS
I Test algorithm provided as template

3 / 11



Qnetd

I 3rd side for Qdevice-net

I It is “clever” - responsible for decisions

I Supports TLS with both server and client (per cluster)
certificates

I It’s able to handle multiple clusters

I No configuration file - all required information provided by
cluster nodes

I No persistent state

I TCP based protocol designed with backwards/forwards
compatibility in the mind since the very beginning

4 / 11



Algorithms

I LMS
I Provides NumberOfNodes − 1 votes
I If node is last one connected to qnetd, node gets votes
I If more nodes exists vote is provided to largest partition
I Useful when cluster with only one node should remain quorate
I With wait for all enabled it can survive qnetd disconnect

(but no other change can happen)

I FFSplit
I Provides one vote
I Behaves like just another node
I Make sense only for even-node clusters
I Useful for 2 node cluster (or a lot of them), cluster where

qnetd can disappear or where it’s not intended to let qnetd
overvote cluster membersip

5 / 11



Heuristics

I Execute arbitrary number of commands

I If all of them success whole heuristics sucess → no scoring

I Result sent to the corosync-qnetd and there it is used as
tie-breaker

I 3 modes of operation: disabled, sync (heuristics executed only
during the sync phase → only when membership changes),
enabled (sync and regular heuristics)

6 / 11



Future

I Clustered Qnetd
I Idea is to implement active/passive RA for Qnetd
I Qnetd doesn’t have persistent state
I Qdevice tries to reconnect when connection to Qnetd is lost
I Only nssdb is subject to synchronization

I Heuristics only model
I Idea is to base vote only on heuristics result
I Should be used in situations where 3rd side arbiter is already

deployed

I Allow more than 1 vote for FFSplit
I For situations when LMS is too strong and current FFSplit too

weak
I Be able to set arbitrary votes

7 / 11



Future cont.

I Redundant connections to Qnetd
I Better reliability
I Quite important for LMS

I Disk model?
I Probably use SBD as arbiter
I Closer replacement of qdisk

8 / 11



Part II

Extending Qdevice

9 / 11



Algorithms - implementing new one

I Add TLV DECISION ALGORITHM TYPE * into tlv.[ch]

I Add handling of this new type into helper functions in tlv.c,
qdevice-net-instance.c, . . . (compiler will tell you)

I Qdevice side
I Qdevice-net side callbacks are mostly empty (default should be

good enough)
I Copy qdevice-net-algo-test.[ch] and use them as a

template
I Add to Makefile.am

I Qnetd side
I Much harder because qnetd side is the “clever” one
I Use qnetd-algo-test.[ch] as template

10 / 11



Model - implementing new one

I Add QDEVICE MODEL TYPE * into qdevice-model-type.h

I Use qdevice-model-net.[ch] as template

I Add to Makefile.am

I Implement required functions

I Model is responsible for main loop and periodical calling of
qdevice votequorum poll

11 / 11


