
Corosync Cluster Engine:
 Designing High Availability

Steven Dake
June 2010

 2

Agenda

� What is High Availability

� Project History

� Features

� Example Design

� Real-World Designs

� Quality and Closing

 3

What is High Availability?

� Simple Equation:

� MTBF = mean time between failures

� MTTR = mean time to repair

� A = probability system will provide service
at a random time (ranging from 0 to 1)

A=
MTBF

MTBF�MTTR

 4

What is High Availability?

� Two ways to improve availability:

� Increase MTBF to very large values

� Reduce MTTR to very low values

High Availability is achieved through the
manipulation of MTBF and MTTR
parameters of system design to meet
availability requirements.

A=
MTBF

MTBF�MTTR

 5

Hardware Failure Cases

� Hardware Failure Causes:

� Design failure (rare)

� Random failure (rare)

� Infant Mortality (high rate of failure)

� Wear Out (high rate of failure)

� Increasing hardware MTBF:

� Use better components

� Preemptively replace hardware prior to
wear out

 6

Software Failure Cases

� Implementation Defects (very common):

� Typically measured in defects per KLOC

� Increasing software MTBF:

� Experienced engineering team

� Peer review of all code

� Simple design

� Compact code foot print

� Static and runtime analysis tools such as valgrind,
lint, high compiler warning levels, coverity, lcov

� Test coverage of the software

 7

What about reducing MTTR?

� Older Models:

� 24 hour monitoring and support staff

� On-site spares

� Newer Models:

� Depend on active redundancy

� Stateless fail-over

� N-way state replication with fail-over

 8

Corosync Project History

� Started life as �openais.org� in 2002

� Announced Corosync in July 2008

� First 1.0.0 release in July 2009

� �flatiron branch� feature frozen in June
2010

� �weaver's needle� branch announced in
June 2010

 9

Features Overview

� Four C Programming APIs to create HA aware applications

� Ethernet and Infiniband ipv4/ipv6 Native Network Support

� Diagnostics and failure analysis

� 32/64 bit BE/LE support

� High focus on correctness and performance

� Network Security Services for authentication and encryption

Project Philosophy: Allow developers to
create HA apps however they desire.

 10

The Closed Process Group API

� Applications join a named group

� A group member may publish a message
to all group members

� Messages are delivered asynchronously in
atomic order to all nodes

 11

The Simple Availability Manager API

� Initialize API called which generates a
replica of the process

� If process fails because of defect:

� SAM library generates a replica of the
replica process

� SAM starts the replica process

� Failures are detected between the parent
replica process and the child active
process via health-checking

 12

The Configuration Database API

� Provides statistics and configuration
information

� Permits applications to store data in the in-
memory database (not replicated)

 13

The Quorum API

� Our HA model allows for partitions

� Quorum provides notification to the
application that the process may not
continue because of a partition

 14

Features: logging diagnostics

� High Performance Low Impact Failure Analysis

� Four logging targets

� memory, stderr, syslog, file

� All events go to memory

� HP Z800 Xeon 5530 single node consumes ~5% of the
corosync process utilization running full cpgbench
with 171,751,968 recorded events to memory as
measured with oprofile and corosync-fplay

� Administrator configures which events go to other log targets

 15

Features: logging diagnostics

� Example:
[root@cast sdake]# corosync
[root@cast sdake]# killall -SEGV corosync
[root@cast sdake]# corosync-fplay | tail -10
rec=[134] Log Message=Synchronization barrier completed
rec=[135] Log Message=Committing synchronization for (corosync cluster
closed process group service v1.01)
rec=[136] Log Message=mcasted message added to pending queue
rec=[137] Log Message=releasing messages up to and including a
rec=[138] Log Message=Delivering b to c
rec=[139] Log Message=Delivering MCAST message with seq c to
pending delivery queue
rec=[140] Log Message=Completed service synchronization, ready to
provide service.
rec=[141] Log Message=releasing messages up to and including b
rec=[142] Log Message=releasing messages up to and including c
Finishing replay: records found [142]

 16

Features: statistics diagnostics

� Configuration and Statistics Database
populated with diagnostics information
[root@cast sdake]# corosync-objctl runtime.connections
runtime.active=1
runtime.closed=3
runtime.corosync-objctl:7595:10.service_id=11
runtime.corosync-objctl:7595:10.client_pid=7595
runtime.corosync-objctl:7595:10.responses=8
runtime.corosync-objctl:7595:10.dispatched=0
runtime.corosync-objctl:7595:10.requests=11
runtime.corosync-objctl:7595:10.sem_retry_count=0
runtime.corosync-objctl:7595:10.send_retry_count=0
runtime.corosync-objctl:7595:10.recv_retry_count=0
runtime.corosync-objctl:7595:10.flow_control=0
runtime.corosync-objctl:7595:10.flow_control_count=0
runtime.corosync-objctl:7595:10.queue_size=0

 17

Example Design

� Sample program simulates the state of a savings
account

� Any node may deposit or withdraw money from
accounts in the system

� 32 nodes keep copy of all transactions in memory

� If application fails to health-check, it is restarted via
SAM

� Savings account transactions replicated with CPG

 18

main() - using SAM

static int instance_id;
static int healthy = 1;

Int hc_callback (void *)
{

If (healthy) {
return 0;

}
return -1;

}
int main (void)
{

cs_error_t res;

res = sam_initialize(2000, SAM_RECOVERY_POLICY_RESTART);
res= sam_register(&instance_id);
res= sam_hc_callback_register(hc_callback);

}

This simple code will execute the restart of the process if it fails to health-check

 19

main() - Initializating cpg
static cpg_handle_t handle;

static void cpg_deliver_fn {
cpg_handle_t handle,
const struct cpg_name group_name,
uint32_t nodeid,
uint32_t pid,
void *msg,
size_t msg_len)

{
/* Process messages here -
 Shown on later slide */

}

static struct group_name savings_group {
.value = �savings�,
.len = 7

};
static cpg_callbacks_t callbacks = {

.cpg_deliver_fn = cpg_deliver_fn,

.cpg_confchg_fn = NULL
};

int main (void)
{

cs_error_t res;

res = cpg_initialize(&handle, &callbacks);
res = cpg_join (handle, group);

}

 20

How to make messages
#define MESSAGE_ID_DEPOSIT 1
#define MESSAGE_ID_WITHDRAW 2

struct savings_header {
uint32_t msg_id;
uint32_t size;

};

struct savings_depost_msg {
struct savings_header;
char account[128];

 uint64_t pennies;
};

struct savings_withdraw_msg {
struct savings_header;
char account[128];
uint64_t pennies;
void *withdraw_failed;

};

 21

How to send a Deposit

static cs_error_t deposit_send (char account_number[128], uint64_t pennies)
{

struct savings_depost_msg depost_msg;
struct iovec iov;
cs_error_t res;

deposit_msg.savings_header.msg_id = MESSAGE_ID_DEPOSIT;
deposit_msg.savings.header.size = sizeof (deposit_msg);
memcpy (&depost_msg.account, account, 128);
depost_msg.pennies = pennies;
iov.iov_base = depost_msg;
iov.iov_len = 1;

res = cpg_mcast_joined (handle, CPG_TYPE_AGREED, &iov, 1);

return (res);
}

 22

How to send a Withdraw

static cs_error_t withdraw_send (char account_number[128], uint64_t pennies,
void (*withdraw_failed) (void))

{
struct savings_withdraw_msg depost_msg;
struct iovec iov;
cs_error_t res;

withdraw_msg.savings_header.msg_id = MESSAGE_ID_DEPOSIT;
withdraw_msg.savings.header.size = sizeof (deposit_msg);
memcpy (&withdraw_msg.account, account, 128);
withdraw_msg.pennies = pennies;
withdraw_msg.withdraw_failed = withdraw_failed;
iov.iov_base = withdraw_msg;
iov.iov_len = 1;

res = cpg_mcast_joined (handle, CPG_TYPE_AGREED, &iov, 1);

return (res);
}

 23

main(): How to process pending
messages

Int main (void)
{

fd_set read_fds;
Int select_fds;

FD_ZERO (&read_fds);
res = cpg_fd_get (handle, &select_fd);
for (;;) {

FD_SET(select_fd, &read_fds);
If (FD_ISET (select_fd, read_fds)) {

res = cpg_dispatch (handle, CS_DISPATCH_ALL);
}

}
}

 24

cpg_deliver_fn() - processing
messages

static void deposit_process (const struct savings_header *hdr)
{

const struct deposit_message = (const struct depost_message *)hdr;

/*
 * if depost_message->account found, add pennies to in memory storage
 */

}

static void withdraw_process (const struct savings_header *hdr, int nodeid)
{

const struct withdraw_message = (conststruct withdraw_message *)hdr;

/*
 * if deposit->message->account found
 * if account pennies > withdraw_message->pennies {

Do withdraw
} else {

cpg_local_get (handle, &my_node_id);
If (my_node_id == nodeid) {

 * withdraw_message->withdraw_failed();
}

 */
}

 25

cpg_deliver_fn() - processing
messages

cpg_deliver_fn (...) {
const struct savings_header header = (const struct savings_header

*)msg;

switch (msg->id) {
case MESAGE_ID_DEPOSIT:

deposit_process (msg);
break;

case MESSAGE_ID_WITHDRAW:
withdraw_process (msg, nodeid);
break;

}
}

 26

Merging State after a Partition

� Determine inconsistent state by message
exchange

� Make state consistent on all nodes via
message exchange

� Watch for my Linux Symposium Paper for
more details on merging state

 27

Real Design: Pacemaker

� Pacemaker is an Availability Manager for
non-ha-aware applications

� Community chosen standard AM going
forward for most Linux Distributions

Supports stateless failover model

 28

Real Design: Apache QPID

� QPID Implements the AMQP messaging
standard with very high performance
requirements

� QPID is a ha-aware application

� All AMQP messages are replicated to
multiple nodes in the Corosync Cluster

 29

Example Design
QPID Benchmarks over IBA

16 Bytes 32 Bytes 64 Bytes 128 Bytes 256 Bytes 512 Bytes 1024 Bytes

0

100000

200000

300000

400000

500000

600000

700000

AMQP Perftest comparison of Corosync vs No Corosync

Corosync

No HA

Size of Packets

A
v
e
ra

g
e
 M

e
s
s
a
g

e
s
/S

e
c
o
n
d

3 node cluster
*IBM X3550
* 2 cpu 4-Core Xeon
* E5420 2.5 ghz
* 16 GB Ram 266mhz
* Mellanox MT25204

 30

Corosync Quality

� Average professional engineering experience for major contributors
is 12 years

� All patches require peer-review from a community member

� Test suite with 91 test cases run against each commit to the tree
automatically

� Use of valgrind, coverity, lint, lcov regularly

� Identify testing gaps via lcov and develop new test cases to verify
code that doesn't have coverage

� Compact code base � flatiron sloccount shows 42k lines of code

� Available in nearly every modern Linux distribution � lots of eyeballs,
platforms, environments to find defects

 31

Closing

� Corosync is likely already in your Linux
distribution but if not, Download today:

http://www.corosync.org

� Test Coverage:

http://www.corosync.org/testcoverage

� Automated Builds and Testing:

http://www.corosync.org:8010

