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What is High Availability?

� Simple Equation:

� MTBF = mean time between failures

� MTTR = mean time to repair

� A = probability system will provide service 
at a random time (ranging from 0 to 1)

A=
MTBF

MTBF�MTTR
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What is High Availability?

� Two ways to improve availability:

� Increase MTBF to very large values

� Reduce MTTR to very low values

High Availability is achieved through the 
manipulation of MTBF and MTTR 
parameters of system design to meet 
availability requirements.

A=
MTBF

MTBF�MTTR
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Hardware Failure Cases

� Hardware Failure Causes:

� Design failure (rare)

� Random failure (rare)

� Infant Mortality (high rate of failure)

� Wear Out (high rate of failure)

� Increasing hardware MTBF:

� Use better components

� Preemptively replace hardware prior to 
wear out
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Software Failure Cases

� Implementation Defects (very common):

� Typically measured in defects per KLOC

� Increasing software MTBF:

� Experienced engineering team

� Peer review of all code

� Simple design

� Compact code foot print

� Static and runtime analysis tools such as valgrind, 
lint, high compiler warning levels, coverity, lcov

� Test coverage of the software
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What about reducing MTTR?

� Older Models:

� 24 hour monitoring and support staff

� On-site spares

� Newer Models:

� Depend on active redundancy

� Stateless fail-over

� N-way state replication with fail-over
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Corosync Project History

� Started life as �openais.org� in 2002

� Announced Corosync in July 2008

� First 1.0.0 release in July 2009

� �flatiron branch� feature frozen in June 
2010

� �weaver's needle� branch announced in 
June 2010
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Features Overview

� Four C Programming APIs to create HA aware applications

� Ethernet and Infiniband ipv4/ipv6 Native Network Support

� Diagnostics and failure analysis

� 32/64 bit BE/LE support

� High focus on correctness and performance

� Network Security Services for authentication and encryption

Project Philosophy: Allow developers to 
create HA apps however they desire.
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The Closed Process Group API

� Applications join a named group

� A group member may publish a message 
to all group members

� Messages are delivered asynchronously in 
atomic order to all nodes
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The Simple Availability Manager API

� Initialize API called which generates a 
replica of the process

� If process fails because of defect:

� SAM library generates a replica of the 
replica process

�  SAM starts the replica process

� Failures are detected between the parent 
replica process and the child active 
process via health-checking 
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The Configuration Database API

� Provides statistics and configuration 
information

� Permits applications to store data in the in-
memory database (not replicated)
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The Quorum API

� Our HA model allows for partitions

� Quorum provides notification to the 
application that the process may not 
continue because of a partition
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Features: logging diagnostics

� High Performance Low Impact Failure Analysis

� Four logging targets

� memory, stderr, syslog, file

� All events go to memory

� HP Z800 Xeon 5530 single node consumes ~5% of the 
corosync process utilization running full cpgbench 
with 171,751,968 recorded events to memory as 
measured with oprofile and corosync-fplay

� Administrator configures which events go to other log targets
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Features: logging diagnostics

� Example:
[root@cast sdake]# corosync
[root@cast sdake]# killall -SEGV corosync
[root@cast sdake]# corosync-fplay | tail -10
rec=[134] Log Message=Synchronization barrier completed
rec=[135] Log Message=Committing synchronization for (corosync cluster 
closed process group service v1.01)
rec=[136] Log Message=mcasted message added to pending queue
rec=[137] Log Message=releasing messages up to and including a
rec=[138] Log Message=Delivering b to c
rec=[139] Log Message=Delivering MCAST message with seq c to 
pending delivery queue
rec=[140] Log Message=Completed service synchronization, ready to 
provide service.
rec=[141] Log Message=releasing messages up to and including b
rec=[142] Log Message=releasing messages up to and including c
Finishing replay: records found [142]
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Features: statistics diagnostics

� Configuration and Statistics Database 
populated with diagnostics information
[root@cast sdake]# corosync-objctl runtime.connections
runtime.active=1
runtime.closed=3
runtime.corosync-objctl:7595:10.service_id=11
runtime.corosync-objctl:7595:10.client_pid=7595
runtime.corosync-objctl:7595:10.responses=8
runtime.corosync-objctl:7595:10.dispatched=0
runtime.corosync-objctl:7595:10.requests=11
runtime.corosync-objctl:7595:10.sem_retry_count=0
runtime.corosync-objctl:7595:10.send_retry_count=0
runtime.corosync-objctl:7595:10.recv_retry_count=0
runtime.corosync-objctl:7595:10.flow_control=0
runtime.corosync-objctl:7595:10.flow_control_count=0
runtime.corosync-objctl:7595:10.queue_size=0
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Example Design

� Sample program simulates the state of a savings 
account

� Any node may deposit or withdraw money from 
accounts in the system

� 32 nodes keep copy of all transactions in memory

� If application fails to health-check, it is restarted via 
SAM

� Savings account transactions replicated with CPG
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main() - using SAM

static int instance_id;
static int healthy  = 1;

Int hc_callback (void *)
{

If (healthy) {
return 0;

}
return -1;

}
int main (void)
{

cs_error_t res;

res = sam_initialize(2000, SAM_RECOVERY_POLICY_RESTART);
res= sam_register(&instance_id);
res= sam_hc_callback_register(hc_callback);

}

This simple code will execute the restart of the process if it fails to health-check
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main() - Initializating cpg
static cpg_handle_t handle;

static void cpg_deliver_fn {
cpg_handle_t handle,
const struct cpg_name group_name,
uint32_t nodeid,
uint32_t pid,
void *msg,
size_t msg_len)

{
/* Process messages here -
 Shown on later slide */

}

static struct group_name savings_group  {
.value = �savings�,
.len = 7

};
static cpg_callbacks_t callbacks = {

.cpg_deliver_fn = cpg_deliver_fn,

.cpg_confchg_fn = NULL
};

int main (void)
{

cs_error_t res;

res = cpg_initialize(&handle, &callbacks);
res = cpg_join (handle, group);

}
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How to make messages
#define MESSAGE_ID_DEPOSIT 1
#define MESSAGE_ID_WITHDRAW 2

struct savings_header {
uint32_t msg_id;
uint32_t size;

};

struct savings_depost_msg {
struct savings_header;
char account[128];

 uint64_t pennies;
};

struct savings_withdraw_msg {
struct savings_header;
char account[128];
uint64_t pennies;
void *withdraw_failed;

};
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How to send a Deposit

static cs_error_t deposit_send (char account_number[128], uint64_t pennies)
{

struct savings_depost_msg depost_msg;
struct iovec iov;
cs_error_t res;

deposit_msg.savings_header.msg_id = MESSAGE_ID_DEPOSIT;
deposit_msg.savings.header.size = sizeof (deposit_msg);
memcpy (&depost_msg.account, account, 128);
depost_msg.pennies = pennies;
iov.iov_base  = depost_msg;
iov.iov_len = 1;

res = cpg_mcast_joined (handle, CPG_TYPE_AGREED, &iov, 1);

return (res); 
}
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How to send a Withdraw

static cs_error_t withdraw_send (char account_number[128], uint64_t pennies,
void (*withdraw_failed) (void))

{
struct savings_withdraw_msg depost_msg;
struct iovec iov;
cs_error_t res;

withdraw_msg.savings_header.msg_id = MESSAGE_ID_DEPOSIT;
withdraw_msg.savings.header.size = sizeof (deposit_msg);
memcpy (&withdraw_msg.account, account, 128);
withdraw_msg.pennies = pennies;
withdraw_msg.withdraw_failed = withdraw_failed;
iov.iov_base  = withdraw_msg;
iov.iov_len = 1;

res = cpg_mcast_joined (handle, CPG_TYPE_AGREED, &iov, 1);

return (res); 
}
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main(): How to process pending 
messages

Int main (void)
{

fd_set read_fds;
Int select_fds;

FD_ZERO (&read_fds);
res = cpg_fd_get (handle, &select_fd);
for (;;) {

FD_SET(select_fd, &read_fds);
If (FD_ISET (select_fd, read_fds)) {

res = cpg_dispatch (handle, CS_DISPATCH_ALL);
}

}
}
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cpg_deliver_fn() - processing 
messages

static void deposit_process (const struct savings_header *hdr)
{

const struct deposit_message = (const struct depost_message *)hdr;

/*
 * if depost_message->account found, add pennies to in memory storage
 */

}

static void withdraw_process (const struct savings_header *hdr, int nodeid)
{

const struct withdraw_message = (conststruct withdraw_message *)hdr;

/*
 * if deposit->message->account found
 * if account pennies > withdraw_message->pennies {

Do withdraw
} else {

cpg_local_get (handle, &my_node_id);
If (my_node_id == nodeid) {

 * withdraw_message->withdraw_failed();
}

 */
}
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cpg_deliver_fn() - processing 
messages

cpg_deliver_fn (...) {
const struct savings_header header = (const struct savings_header 

*)msg;

switch (msg->id) {
case MESAGE_ID_DEPOSIT:

deposit_process (msg);
break;

case MESSAGE_ID_WITHDRAW:
withdraw_process (msg, nodeid);
break;

}
}
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Merging State after a Partition

� Determine inconsistent state by message 
exchange

� Make state consistent on all nodes via 
message exchange

� Watch for my Linux Symposium Paper for 
more details on merging state
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Real Design: Pacemaker

� Pacemaker is an Availability Manager for 
non-ha-aware applications

� Community chosen standard AM going 
forward for most Linux Distributions

Supports stateless failover model
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Real Design: Apache QPID

� QPID Implements the AMQP messaging 
standard with very high performance 
requirements

� QPID is a ha-aware application

� All AMQP messages are replicated to 
multiple nodes in the Corosync Cluster
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Example Design
QPID Benchmarks over IBA
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Corosync Quality

� Average professional engineering experience for major contributors 
is 12 years

� All patches require peer-review from a community member

� Test suite with 91 test cases run against each commit to the tree 
automatically

� Use of valgrind, coverity, lint, lcov regularly

� Identify testing gaps via lcov and develop new test cases to verify 
code that doesn't have coverage

� Compact code base � flatiron sloccount shows 42k lines of code

� Available in nearly every modern Linux distribution � lots of eyeballs, 
platforms, environments to find defects
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Closing

� Corosync is likely already in your Linux 
distribution but if not, Download today:

http://www.corosync.org

� Test Coverage:

http://www.corosync.org/testcoverage

� Automated Builds and Testing:

http://www.corosync.org:8010


