Inside Closed Process Groups

An OpenAlS Service

S i
‘ Standards-Based Cluster Framework

Steven Dake
April 2007

WWW.0penais.org

Agenda

* Virtual Synchrony

* Totem

* Example Application of Totem
* Closed Process Groups

* The Closed Process Group Interface

Definitions

Group Messaging
— Sending messages from 1 sender to many receivers.
Processor

— The entity responsible for executing group messaging and
membership protocols.

Regular Configuration Change

— An event containing a unique view identifier and list of processors
contained within the configuration. Denoted as RCn in examples.

Transitional Configuration

— An event containing a unique view identifier and list of processors
transitioning from the old regular configuration to the new regular
configuration. Denoted as TCn in examples.

Virtual Synchrony Property #1 —

self delivery

* self delivery — A message sent by a
processor Is delivered to that processor.

Example:
Processor P1 sends message M1
M1 1s selt-delivered to P1

Virtual Synchrony Property #2 —
AGREED ordering

* agreed ordering — all processors agree upon
delivery order of messages.

Example:

Pl: M1 M2 M3 M4
P2: M1 M2 M3 M4
P3: M1 M2 M3 M4

Can't happen:

Pl: M1 M2 M3 M4
P2: M1 M2 M4 M3
P3: M1 M2 M3 M4

Virtual Synchrony Property #3 —
SAFE ordering

* SAFE ordering — agreed ordering extended
such that a message may not be delivered
until every processor within the configuration

has a copy.

P1 sends M1 M2 M3.

P2 and P3 only receive M1 and M2.

P1 P2 P3 deliver M1 M2.

P2 and P3 recover M3.

M3 may now be delivered in safe order.

Virtual Synchrony Property #4 —
Virtual Synchrony

* virtual synchrony — messages are delivered
In agreed order and configuration changes
are delivered in agreed order relative to
messages.

Example:
P1: M1 M2 M3 M4 CT1 CRI1
P2: M1 M2 M3 M4 CT1 CRI1

Can't happen:
Pl1: M1 M2 M3 M4 CT1 CRI1
P2: M1 M2 M3 CT1 CRI1

Totem — The Single Ring Protocol

* Encryption and Authentication of all messages
* Support for redundant network devices via RRP

* Support for jumbo frame sizes and full fragmentation of all
messages to MTU

* Full marshalling of all communications protocols
* Designed with future multiple ring architecture in mind

* Usable as a library or via other interfaces such as CPG
(closed process groups)

'he Ring Protocol

he Ring Protocol

he Ring Protocol

he Ring Protocol

he Ring Protocol

Detects Missing #2

he Ring Protocol

eq #6, RTR #2

Detects Missing #2

he Ring Protocol

Detects Missing #5

MCAé}T #2, #6 eq #6, RTR #2

Detects Missing #2

he Ring Protocol

Detects Mlssmg #5

Seq #7, RTR # MCA%T #2, #6 eq #6, RTR #2

MCA #4, #5

Detects Missing #2

'he Ring Protocol

MCAé}T #2, #6 eq #6, RTR #2

MCA #4, #5
CAST #5

Seq #7, RTR #

Detects Missing #2

Example Problem — Lock Service
Client / Server Approach

* One server contains list of locks.

* A lock request is sent to the server.
* The server processes the request.
* The server responds to the client.

* maximum 1700 locks per second — tied
directly to Ethernet access time.

Example Problem — Lock Server
Virtual Synchrony Approach

List of all locks contained on all processors

processor acquires lock by sending message
requesting lock

when message Is self-delivered lock is acquired

because all processors have replica of locks, no
request/response Is required

maximum locks per second — depends on cpu speed
but at least 30,000 per second

What are Closed Process Groups

* Maintains membership at process group level

* A processor is uniguely identified by Processor and Process ID

Example:

P1 (pid 5), P2 (pid 6), P3 (pid 7), P4 (pid 8) joined to process group A

P1 (pid 5): M1 M2 M3 M4 CTA(P1,5)(P2,6)(P3,7)(P3,12) CRA(P1,5)(P2,6)(P3,7)(P3,12)
P2 (pid 6): M1 M2 M3 M4 CTA(P1,5)(P2,6)(P3,7)(P3,12) CRA(P1,5)(P2,6)(P3,7)(P3,12)
P3 (pid 7): M1 M2 M3 M4 CTA(P1,5)(P2,6)(P3,7)(P3,12) CRA(P1,5)(P2,6)(P3,7)(P3,12)
P3 (pid 12): M1 M2 M3 M4 CTA(P1,5)(P2,6)(P3,7)(P3,12) CRA(P1,5)(P2,6)(P3,7)(P3,12)

4 messages sent before P4 (pid12) fails and P3 (pid12) fails before it delivers M8
P1 (pid 5): M5 M6 M7 CTA(P1,5)(P2,6)(P3,7) M8 CRA(P1,5)(P2,6)(P3,7)

P2 (pid 6): M5 M6 M7 CTA(P1,5)(P2,6)(P3,7) M8 CRA(P1,5)(P2,6)(P3,7)

P3 (pid 7): M5 M6 M7 CTA(P1,5)(P2,6)(P3,7) M8 CRA(P1,5)(P2,6)(P3,7)

P4 (pid 12): M5 M6 M7 fails

CPG — Interface Properties

Supports multiple instances in one
application

Mechanism to obtain current membership
view

Mechanism to join and leave a process group

Mechanism to send and deliver messages to
named groups

CPG — Initialize and Finalize

cpg _error t cpg_initialize (
cpg_handl e _t *handl e,
cpg_cal | backs t *cal | backs);

cpg error _t cpg finalize (
cpg_handl e t handl e);

exanpl e:

cpg_cal |l backs t call backs = {
.cpg_deliver fn = cpg_ex _deliver fn,
.cpg_confchg fn = cpg_ex _confchg fn

}s

cpg_handl e_t handl e;

cpg_initialize (&andle, &call backs);
cpg_finalize (handle);

CPG — Obtaining Current View

cpg_error_t cpg_nenbership _get (
cpg_handl e _t handl e,
struct cpg_nane *group_nane,
struct cpg_address *nmenber |i st,
i nt *nmenber list _entries);

exanpl e:
cpg_name = {

.length =7

.val ue = “exanpl e”
}s

struct cpg_address nenbers[CPG MEMBERS MNAX] ;

I nt menber list _entries;

cpg_nenbershi p_get (cpg_handl e, &cpg nanme, nenbers,
&renber |ist _entries);

CPG — Joining and Leaving

cpg _error_t cpg_ join (
cpg_handl e _t handl e,

struct cpg_nane *group_nane);

cpg _error _t cpg_ | eave (
cpg_handl e _t handl e,
struct cpg_nane *group_nane);

exanpl e:
cpg_nanme = {

.length =7

.val ue = “exanpl e”
}

cpg_j oin (handl e, &cpg_nane);

cpg_l eave (handl e, &cpg_nane);

CPG — Publishing a Message

cpg_error _t cpg_ntast joined (
cpg_handl e _t handl e,
Ccpg_guar antee_t guarant ee,
struct iovec *iovec,
int iov_|len);

exanpl e:

char buf[512000];

struct iovec iov = {
.1 ov_base = buf,
.iov_len = 512000

}

cpg_ntast joined (handle, CPG TYPE AGREED, & ov, 1);

CPG — Dispatching Callbacks

cpg _error _t cpg_fd get(
cpg_handl e _t handl e,
int *fd);

cpg _error _t cpg_dispatch (
cpg_handl e _t handl e,
cpg_di spatch_t di spatch_types);

exanpl e:
I nt fd;

cpg fd get (handle, &fd);
select (fd+1, 0, 0, 0);
cpg_di spatch (handl e, CPG_DI SPATCH ALL);

CPG — Delivery Callback

cpg_deliver _call back (
cpg_handl e _t handl e,
struct cpg_nanme *group_nhane,
ui nt 32_t nodei d,
uint32_t pid,
void *nsg,
i nt neg_| en)

printf (“Delivering nessage from %l(pid%) with len %",
nodei d, pid, nsg_len);

CPG — Configuration Change Callback

cpg_confchg cal | back (
cpg_handl e_t handl e,
struct cpg_nane *group_nane,
struct cpg_address *nmenber |ist, int nmenber _|list_entries,
struct cpg_address *left list, int left list _entries,
struct cpg_address *joined list, int joined list _entries,

printf (“The configuration changed\n”);

Performance

Throughput (msgs/sec) - Throughput (MB/sec)

45000 CC) 80
-8 40000 8 70 ——
8 ss000) s N _
$ 30000 > 1 node xmit| 5 1 node xmit
~ 25000 N "\ 2 node xmit N i
) 20000 S~ JORR " 2 node xmit
() SN\ 3 nod it
g 15000 = fnode xmi 3 30 3 node xmit
¢y 10000 © 20
(n @
Q5000 @D 10
= 0 \ \ \ \ \ \ \ \ \ \ \ = o \ \ \ \ \ \ \ \ \ \ \

_ Message Size
Message Size

3 nodes, SMC 8508 switch, 8800 netmtu, 1-3 nodes sending, no encryption
as tested with the tool cpgbench distributed with openais test directory

Summary

Virtual Synchrony provides a powerful mechanism for clustered computing
CPG provides a simple and powerful API for clustering

Complete implementation of Totem with recovery of lost messages,
encryption, authentication, and extended virtual synchrony

Support for redundant network interface card operation and jumbo frames for
GIGE networks

High Performance operation

