The openais Architecture

Aninside look at an implementation of SA Forum's AlIS

Steven Dake
Presented by Tim Anderson

14 September 2004

History of openais

» Started lifeas“cmgr” in February 2002

» Hotswap manager for ATCA
= Converted to AlSin May 2003

» AlSreleased as MontaVista product in Dec 2003
= Rearchitected to use virtua synchrony Jan 2004
» Released under Revised BSD license July 2004

= Mark Haverkamp contributed EVT service
Aug/Sept 2004

14 September 2004

Setup and Configuration

Create shared key:

linux# ./keygen

OpenAlS Authentication key generator.
Gathering 1024 bits for key from /dev/random.
Writing openais key to /etc/ais/authkey.

Save /etc/a s/network.conf:
bindnetaddr: 192.168.1.0
mcastaddr: 226.94.1.1
mcastport:6000

Read QUICKSTART in source package for more details

14 September 2004

The Architecture

14 September 2004

Definitions

= Group Messaging
» Sending messages from 1 sender to many receivers.
= Processor
= The entity responsible for executing group messaging and membership
protocols.

= Configuration
= A view, or description, of the processors within a group.

= Agreed Order
= All processors agree upon delivery order of messages delivered using group

messaging.
= Virtual Synchrony
= A model of group messaging whereby all messages within a configuration

view are delivered in agreed order. Configuration changes are delivered in
the same order relative to messages to every processor.

14 September 2004

Group Messaging Interface

. Implements Extended Virtual Synchrony

. Compile-time configuration of maximum
message size

. Encryption and Authentication of all messages

. 4 Priority Levels

. Uses multicast

. Implemented using UDP

. Multipathing in progress

14 September 2004

The Ring Protocol

14 September 2004

The Ring Protocol

Seg N9/

A

14 September 2004

The Ring Protocol

Seq No% #1, #2

14 September 2004

The Ring Protocol

Seq No% #1, #2

" Processor iz | SeMNo#3 [Processor#3 |

14 September 2004

The Ring Protocol

SeqNom%C 41 #2 MCAST43, #4, #5

 Pocessorsz | SANO#S 4 Processor#3

14 September 2004 Detects Missing #2

The Ring Protocol

oSeq #6, RTR #2

SeqNom%C 41 #2 MCAST43, #4, #5

 Pocessorsz | SANO#S 4 Processor#3

14 September 2004 Detects Missing #2

The Ring Protocol

Detects Missing #5

I\/ICA%T #2, #6

MC #1,#2 MCA 3, #4, #5

14 September 2004 Detects Missing #2

The Ring Protocol

Detects Missing #5

Seq #7, RTR # MCA%T #2, #6

MCA 3, #4, #5

14 September 2004 Detects Missing #2

The Ring Protocol

Detects Missing #5

Seq #7, RTR # MCA%T #2, #6

MCA
CAST #5

14 September 2004 Detects Missing #2

Why Virtual Synchrony

. Integrated Membership

. Strong Membership Guarantees
. Agreed Ordering of Messages

. Self Delivery

. Use of multicast

. Group Wide Flow Control

. Performance

14 September 2004

16

why Virtual Synchrony — Integrated
Membership

gmi_join (struct gmi_groupname * groupname,
void (*deliver_fn) (
struct gmi_groupname * groupname,
struct in_addr source addr,
struct iovec *1ovec,
Intiov_len),
void (*confchg_fn) (
struct sockaddr_in *member_list, int member _list_entries,
struct sockaddr_in *left_list, int left_list_entries,
struct sockaddr_in *joined _list, int joined list_entries),
gmi_join_handle *handle out);
Messages delivered with deliver_fn,

configuration changes delivered with confchg fn
14 September 2004 17

wWhy Virtual Synchrony — Strong
Membership Guarantees

Example: A bank stores money in a distributed fashion based

how many banks arein its “network”. The account starts with $300 and
$99 is deposited. One bank closed forever around the time of the
deposit. What could happen without strong membership guarantees?

Bank #1 Bank #2 Bank #3

14 September 2004 18

Why Virtual Synchrony — Agreed
Ordering of Messages

Object Creation occurs on two seperate processors with the
same “name’. What happens without agreed ordering of
messages? Race conditions!

Processor #1 Processor #2

14 September 2004 19

Why Virtual Syncrhony — self delivery

Library Request Library Response

Executive Request Executive Request

14 September 2004 20

Why Virtual Syncrhony — Use of
Multicast

Int gmi_mcast (
struct gmi_groupname * groupname,
struct iovec *iovec,
Intiov_len,
Int priority);

14 September 2004

21

The Service Handler

. Service Manager Manages service handlers.
. Every Service has 1 or more service handlers.
. Handles requests from library connections.

. Handles requests from group messaging delivery.

. Handles partitions and merges.

. Initializes the service for anew library connection

. Exitsthe service for adeparting library connection.

. Initializes the service for the first time.

14 September 2004

22

The Service Handler — Detalls

struct service _handler {
struct libais_handler *libais_handlers;
Int libais_handlers count;
Int (**aisexec_handler_fns) (void * msg, struct in_addr source addr);
Int aisexec_handler_fns count;
Int (* confchg_fn) (
struct sockaddr_in *member_list, int member _list_entries,
struct sockaddr_in *left_list, int left_list_entries,
struct sockaddr_in *joined list, int joined list_entries);
Int (*libais_init_fn) (struct conn_info *conn_info, void * msg);
Int (*libais_exit_fn) (struct conn_info *conn_info);
Int *aisexec_init_fn) (void);

}

14 September 2004 23

Fow Control

. Group Messaging Interface uses flow control on
network

. Library can access executive much faster then
network can transmit requests

. Library isflow controlled by group messaging
Interface.

14 September 2004

24

Flow Control — Details

Int gmi_send ok (
Int priority,
Int msg_size);

If gmi_send_ok is zero, library request receives

SA ERR TRY_AGAIN. Thissupport is handled by
the service manager. The library handler is not
concerned with flow control.

14 September 2004

25

Performance / No Encryption or Auth
Checkpoint Write from One Processor
(100 mbit network)

Throughput

Total AVT\iIabIe Bandwidth

=
o

MB / SEC

o = N W S (4] o N [ee] ©
|

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
KB /MSG

Transactions Per Second

2250

2000

1750

1500

1250

1000

TRANS / SEC

750

500

250

0
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

KB / MSG

26

Performance / With Encryption and Auth
Checkpoint Write from One Processor
(100 mbit network)

Throughput

MB / SEC

o B N W A~ OO O N 00 ©

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
KB / MSG

Transactions Per Second
1600

1400

1200

1000

800

TRANS / SEC

600

400

200

0
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

KB /MSG
14 ocpLellivel cvvu4+

Performance / Group Messaging
Scalability with more Processors

Group Messaging Throughput

B
o

MB / SEC

N\ Encryption

No Encryption

S N W M~ 00 O N 00 ©

1 2 3 4 5 6 7 8 9 10 11 12

14 September 2004

Processor Count

28

Project Statistics

. Executive LOC: 16229

. Library LOC: 5951

. Include LOC: 2819

. Total LOC: 24999 (wc -I)

. BK Changesets since openals inception: 65

14 September 2004

29

Production Release Criteria

. 0.7 (stable) to be released in 2004
. IncludesAMF, CKPT, EVT, CLM, EVS

. At least 85% code coverage of every sourcefile
except for filesin test directory

. Published valgrind analysis of any reported
memory errors or leaks

. Code review of remaining uncovered code

. Initially support linux 2.4, linux 2.6 systems

14 September 2004

30

Come Join In

We need developers to develop DLOCK and M SG services.
We need developers to develop Linux man pages.

We need developers to develop distro packaging.

We need user reports of failures and successes.

Web Address:. http://devel oper.osdl.org/dev/openais

Mailing List: openais@lists.osdl.org

Download. http://devel oper.osdl.org/cherry/openais

Bitkeeper: bk clone bk://bk.osdl.org.openais ~/openais

14 September 2004

31

