
14 September 2004 1

The openais Architecture

Steven Dake
Presented by Tim Anderson

An inside look at an implementation of SA Forum's AIS

14 September 2004 2

History of openais

§ Started life as “cmgr” in February 2002

§ Hotswap manager for ATCA

§ Converted to AIS in May 2003

§ AIS released as MontaVista product in Dec 2003

§ Rearchitected to use virtual synchrony Jan 2004

§ Released under Revised BSD license July 2004

§ Mark Haverkamp contributed EVT service
Aug/Sept 2004

14 September 2004 3

Setup and Configuration

Save /etc/ais/network.conf:
bindnetaddr: 192.168.1.0
mcastaddr: 226.94.1.1
mcastport:6000

Read QUICKSTART in source package for more details

Create shared key:
linux# ./keygen
OpenAIS Authentication key generator.
Gathering 1024 bits for key from /dev/random.
Writing openais key to /etc/ais/authkey.

14 September 2004 4

The Architecture

Libais.a

EVT

openais Executive

Group
Messaging
Interface

Aispoll
Interface

Service
Manager

Nodes(1..16)

Nodes(1..16),
instances (1..n)

IPC

EVSCKPTAMFCLM

EVT EVSCKPTAMFCLM

14 September 2004 5

Definitions
§ Group Messaging

§ Sending messages from 1 sender to many receivers.

§ Processor
§ The entity responsible for executing group messaging and membership

protocols.

§ Configuration
§ A view, or description, of the processors within a group.

§ Agreed Order
§ All processors agree upon delivery order of messages delivered using group

messaging.

§ Virtual Synchrony
§ A model of group messaging whereby all messages within a configuration

view are delivered in agreed order. Configuration changes are delivered in
the same order relative to messages to every processor.

14 September 2004 6

Group Messaging Interface

§ Implements Extended Virtual Synchrony
§ Compile-time configuration of maximum

message size
§ Encryption and Authentication of all messages
§ 4 Priority Levels
§ Uses multicast
§ Implemented using UDP
§ Multipathing in progress

14 September 2004 7

The Ring Protocol

Processor #1

Processor #2 Processor #3

•Sequence Number
•Retransmit List
•flow control count
•group arut

ORF Token

14 September 2004 8

The Ring Protocol

Processor #1

Processor #2 Processor #3

•Sequence Number
•Retransmit List
•flow control count
•group arut

ORF Token

Seq No #1

14 September 2004 9

The Ring Protocol

Processor #1

Processor #2 Processor #3

Seq No #1 MCAST #1, #2

•Sequence Number
•Retransmit List
•flow control count
•group arut

ORF Token

14 September 2004 10

Processor #1

Processor #2 Processor #3

Seq No #1 MCAST #1, #2

Seq No #3

The Ring Protocol
•Sequence Number
•Retransmit List
•flow control count
•group arut

ORF Token

14 September 2004 11

Processor #1

Processor #2 Processor #3

Seq No #1 MCAST #1, #2

Seq No #3

Detects Missing #2

MCAST #3, #4, #5

The Ring Protocol
•Sequence Number
•Retransmit List
•flow control count
•group arut

ORF Token

14 September 2004 12

Processor #1

Processor #2 Processor #3

•Sequence Number
•Retransmit List
(RTR)
•flow control count
•group arut

ORF Token

Seq No #1 MCAST #1, #2

Seq No #3

Detects Missing #2

MCAST #3, #4, #5

Seq #6, RTR #2

The Ring Protocol

14 September 2004 13

Processor #1

Processor #2 Processor #3

MCAST #1, #2

Seq No #3

Detects Missing #2

MCAST #3, #4, #5

Seq #6, RTR #2MCAST #2, #6

Detects Missing #5

•Sequence Number
•Retransmit List
(RTR)
•flow control count
•group arut

ORF Token

The Ring Protocol

14 September 2004 14

Processor #1

Processor #2 Processor #3Seq No #3

Detects Missing #2

MCAST #3, #4, #5

Seq #6, RTR #2MCAST #2, #6

Detects Missing #5

Seq #7, RTR #5

•Sequence Number
•Retransmit List
(RTR)
•flow control count
•group arut

ORF Token

The Ring Protocol

14 September 2004 15

Processor #1

Processor #2 Processor #3

Detects Missing #2

MCAST #3, #4, #5

Seq #6, RTR #2MCAST #2, #6

Detects Missing #5

Seq #7, RTR #5

MCAST #5

•Sequence Number
•Retransmit List
(RTR)
•flow control count
•group arut

ORF Token

The Ring Protocol

14 September 2004 16

Why Virtual Synchrony

§ Integrated Membership

§ Strong Membership Guarantees

§ Agreed Ordering of Messages

§ Self Delivery

§ Use of multicast

§ Group Wide Flow Control

§ Performance

14 September 2004 17

Why Virtual Synchrony – Integrated
Membership

gmi_join (struct gmi_groupname *groupname,
void (*deliver_fn) (
struct gmi_groupname *groupname,

struct in_addr source_addr,
struct iovec *iovec,
int iov_len),

void (*confchg_fn) (
struct sockaddr_in *member_list, int member_list_entries,
struct sockaddr_in *left_list, int left_list_entries,
struct sockaddr_in *joined_list, int joined_list_entries),

gmi_join_handle *handle_out);
Messages delivered with deliver_fn,
configuration changes delivered with confchg_fn

14 September 2004 18

Why Virtual Synchrony – Strong
Membership Guarantees
Example: A bank stores money in a distributed fashion based
how many banks are in its “network”. The account starts with $300 and
$99 is deposited. One bank closed forever around the time of the
deposit. What could happen without strong membership guarantees?

Account = $100
Confchg from 4 to 3
Deposits $33
Account = $133

Bank #1

Account = $100
Deposits $25
Confchg from 4 to 3
Account = $125

Bank #2

Account = $100
Confchg from 4 to 3
Deposits $33
Account = $133

Bank #3

14 September 2004 19

Why Virtual Synchrony – Agreed
Ordering of Messages

Object Creation occurs on two seperate processors with the
same “name”. What happens without agreed ordering of
messages? Race conditions!

Created Object “A”
Send A to other processors
Receives create, but already exists

Created Object “A”
Send A to other processors
Receives create, but already exists

Processor #1 Processor #2

14 September 2004 20

Why Virtual Syncrhony – self delivery

Library Request

Library
Handler

Group Messaging
Interface

Executive
Handler

Library Response

Executive RequestExecutive Request

Library Request

Intelligence Here

14 September 2004 21

Why Virtual Syncrhony – Use of
Multicast

int gmi_mcast (
struct gmi_groupname *groupname,
struct iovec *iovec,
int iov_len,
int priority);

14 September 2004 22

The Service Handler
§ Service Manager Manages service handlers.

§ Every Service has 1 or more service handlers.

§ Handles requests from library connections.

§ Handles requests from group messaging delivery.

§ Handles partitions and merges.

§ Initializes the service for a new library connection

§ Exits the service for a departing library connection.

§ Initializes the service for the first time.

14 September 2004 23

The Service Handler – Details

struct service_handler {
struct libais_handler *libais_handlers;
int libais_handlers_count;
int (**aisexec_handler_fns) (void *msg, struct in_addr source_addr);
int aisexec_handler_fns_count;
int (*confchg_fn) (

struct sockaddr_in *member_list, int member_list_entries,
struct sockaddr_in *left_list, int left_list_entries,
struct sockaddr_in *joined_list, int joined_list_entries);

int (*libais_init_fn) (struct conn_info *conn_info, void *msg);
int (*libais_exit_fn) (struct conn_info *conn_info);
int *aisexec_init_fn) (void);

}

14 September 2004 24

Flow Control

§ Group Messaging Interface uses flow control on
network

§ Library can access executive much faster then
network can transmit requests

§ Library is flow controlled by group messaging
interface.

14 September 2004 25

Flow Control – Details

int gmi_send_ok (
int priority,
int msg_size);

If gmi_send_ok is zero, library request receives
SA_ERR_TRY_AGAIN. This support is handled by
the service manager. The library handler is not
concerned with flow control.

14 September 2004 26

Performance / No Encryption or Auth
Checkpoint Write from One Processor
(100 mbit network)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
0

1

2

3

4

5

6

7

8

9

10

Throughput

KB / MSG

M
B

 /
S

E
C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
0

250

500

750

1000

1250

1500

1750

2000

2250

Transactions Per Second

KB / MSG

T
R

A
N

S
 /

S
E

C

Total Available Bandwidth

14 September 2004 27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
0

1

2

3

4

5

6

7

8

9

Throughput

KB / MSG

M
B

 /
S

E
C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

0

200

400

600

800

1000

1200

1400

1600

Transactions Per Second

KB / MSG

T
R

A
N

S
 /

S
E

C

Performance / With Encryption and Auth
Checkpoint Write from One Processor
(100 mbit network)

14 September 2004 28

Performance / Group Messaging
Scalability with more Processors

1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

Group Messaging Throughput

No Encryption

Encryption

Processor Count

M
B

 /
S

E
C

14 September 2004 29

Project Statistics
§ Executive LOC: 16229

§ Library LOC: 5951

§ Include LOC: 2819

§ Total LOC: 24999 (wc -l)

§ BK Changesets since openais inception: 65

14 September 2004 30

Production Release Criteria

§ 0.7 (stable) to be released in 2004

§ Includes AMF, CKPT, EVT, CLM, EVS

§ At least 85% code coverage of every source file
except for files in test directory

§ Published valgrind analysis of any reported
memory errors or leaks

§ Code review of remaining uncovered code

§ Initially support linux 2.4, linux 2.6 systems

14 September 2004 31

Come Join In

We need developers to develop DLOCK and MSG services.
We need developers to develop Linux man pages.
We need developers to develop distro packaging.
We need user reports of failures and successes.

Web Address: http://developer.osdl.org/dev/openais

Mailing List: openais@lists.osdl.org

Download: http://developer.osdl.org/cherry/openais

Bitkeeper: bk clone bk://bk.osdl.org:openais ~/openais

